

Relational Surrogate Loss Learning

ICLR 2022

Tao Huang^{1,2}Zekang Li³Hua Lu⁴Yong Shan³Shusheng Yang⁴Yang Feng³Fei Wang⁵Shan You²Chang Xu¹¹The University of Sydney²SenseTime Research³Chinese Academy of Sciences⁴Huazhong University of Science and Technology⁵University of Science and Technology of China

Loss Functions in Machine Learning Problem Statement

Evaluation metrics are used to measure the performance of models

but

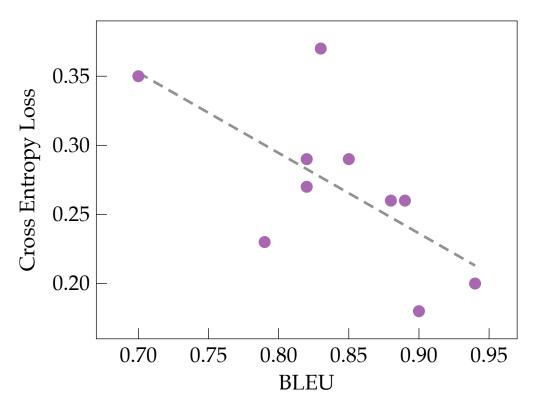
Most of them are non-differentiable and non-decomposable

Loss functions are designed as proxies of evaluation metrics

but

Manually designing a loss

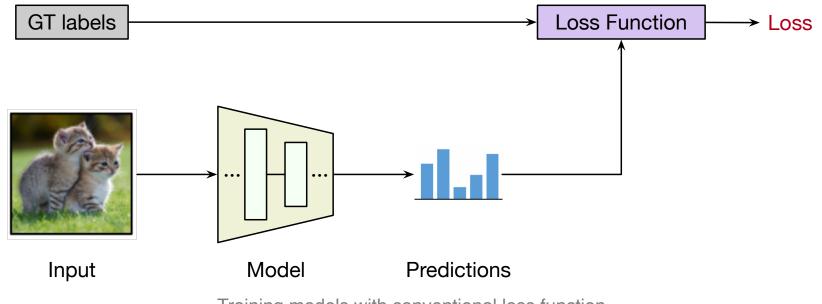
- Requires expertise on specific tasks
- Hard to align well with the metric



BLEU vs. CE loss of samples on neural machine translation task, showing a weak correlation (Spearman: -0.58).

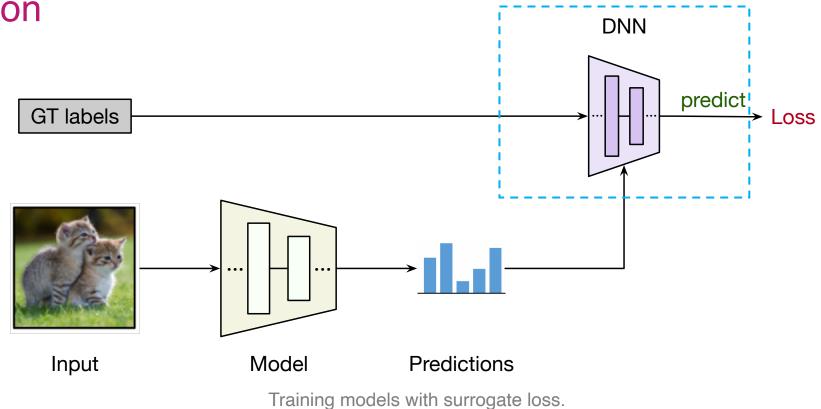
How to design loss functions automatically?

Surrogate Loss Learning Introduction



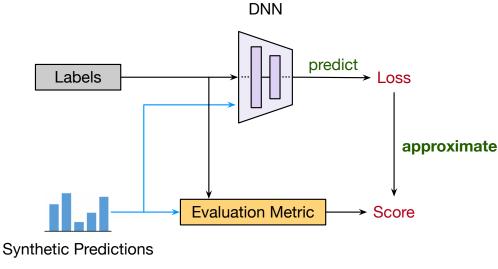
Training models with conventional loss function.

Surrogate Loss Learning Introduction



- Approximate the evaluation metrics using a deep neural network (DNN)
- ► Replace the conventional loss function with the learned DNN

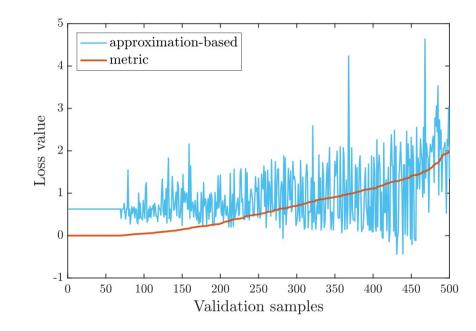
Surrogate Loss Learning Limitations



Training surrogate loss.

Poor performance

- The surrogate loss cannot fully recover the metric values Weak generalizability
- ► Easy to overfit on the training samples
 - \rightarrow need to train surrogate loss and model **alternatively**
- ► The learned surrogate loss cannot generalize to different models and tasks



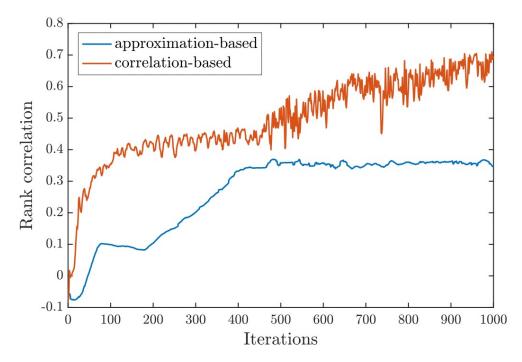
Predictions of evaluation metric and learned surrogate loss. The loss values wave drastically.

Relational Surrogate Loss Learning Motivation

 Evaluation metrics (losses) are used to distinguish whether a model is better or worse than another
→ we only need to keep the relative rankings of samples between the loss and metric

Our solution:

- Only learn rank correlations between the loss and metric instead of approximating the metric
- Propose a differentiable rank correlation loss using differentiable sorting algorithm (Petersen et al., 2021)



Rank correlations between loss and metric (approximation-based loss vs. our correlation-based loss).

^[1] Petersen, Felix, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Differentiable sorting networks for scalable sorting and ranking supervision. In International Conference on Machine Learning, pp. 8546-8555. PMLR, 2021.

Relational Surrogate Loss Learning Gradient Penalty

We only constrain the correlation in the training of surrogate loss

 \rightarrow its first-order derivative changes drastically

Solution: an additional gradient penalty term to enforce the Lipschitz constraint

$$\mathcal{L}_{\text{penalty}} = (\| \nabla_y \mathcal{L}(\boldsymbol{y}, \hat{\boldsymbol{y}}; \boldsymbol{\theta}_l) \|_2 - 1)^2.$$

Loss term of gradient penalty (Eq.(8) in the paper).

Effect of gradient penalty:

- ► Stabilize model training
- ► Improve generalizability

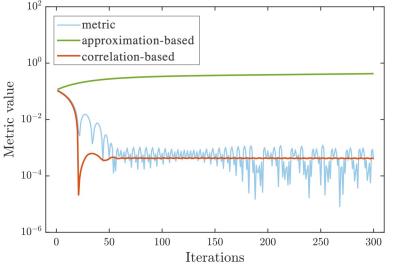
Relational Surrogate Loss Learning Comparison to prior art

Learning Surrogate Losses [2]

- ► Train losses and models alternatively
- ► Train losses independently for each model
- ► Poor performance in our toy experiment

Relational Surrogate Loss Learning

- Train once for all the models of each task
- One learned loss generalizes to all the models
- ► Better performance



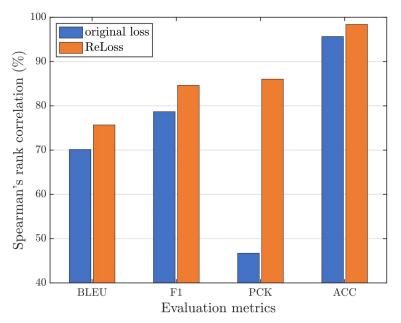
Convergent curves of toy experiment, lower is better.

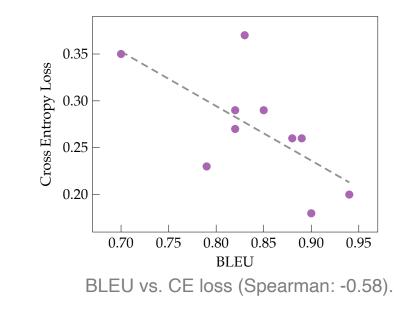
[2] Josif Grabocka, Randolf Scholz, and Lars Schmidt-Thieme. Learning surrogate losses. arXiv. preprint arXiv:1905.10108, 2019.

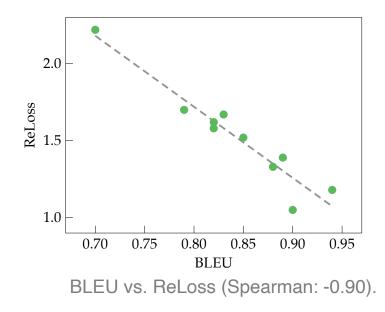
Relational Surrogate Loss Learning Experiments

Better rank correlations compared to the original loss functions in

- ► Neural machine translation: BLEU
- ► Machine reading comprehension: F1
- ► Human pose estimation: PCK
- ► Image classification: ACC







Relational Surrogate Loss Learning Experiments

Better performance on both CV and NLP tasks:

Image Classification

Dataset	Model	CE	,	ReLoss		
Dataset		Top-1 (%)	Top-5 (%)	Top-1 (%)	Top-5 (%)	
CIFAR-10	ResNet-56	94.32 ± 0.25	-	$\textbf{94.57}\pm0.08$	-	
CIFAR-100	ResNet-56	73.61 ± 0.11	-	$\textbf{74.15} \pm 0.14$	-	
ImageNet	ResNet-50	76.5	93.0	76.8	93.0	
	MobileNet V2	71.8	90.3	72.2	90.5	

Human Pose Estimation (outperforms SOTA)

Method	Backbone	Input size	AP	AP^{50}	AP^{75}	$\mathbf{A}\mathbf{P}^M$	\mathbf{AP}^L	AR	PCK@0.05
validation set									
SimpleBaseline (Xiao et al., 2018)	ResNet-50	256 imes 192	70.4	88.6	78.3	67.1	77.2	76.3	85.0
SimpleBaseline + ReLoss	ResNet-50	256 imes 192	71.9	89.9	80.0	68.0	77.9	77.3	86.1
HRNet (Sun et al., 2019)	HRNet-W32	256 imes 192	74.4	90.5	81.9	70.8	81.0	79.8	86.7
HRNet + ReLoss	HRNet-W32	256 imes 192	74.8	90.5	82.4	70.9	81.2	79.9	87.3
test-dev set									
G-RMI (Papandreou et al., 2017)	ResNet-101	353 imes 257	64.9	85.5	71.3	62.3	70.0	69.7	-
SimpleBaseline (Xiao et al., 2018)	ResNet-101	384×288	73.7	91.9	81.1	70.3	80.0	79.0	-
HRNet (Sun et al., 2019)	HRNet-W48	384×288	75.5	92.5	83.3	71.9	81.5	80.5	-
DARK (<mark>Zhang et al.,</mark> 2020)	HRNet-W48	384×288	76.2	92.5	83.6	72.5	82.4	81.1	-
DARK + ReLoss	HRNet-W48	384×288	76.4	92.7	83.7	72.7	82.5	81.3	-

Neural Machine Translation

Model	Speed	Original loss EN-RO RO-EN		ReLoss o	n EN-RO	ReLoss on RO-EN		
	Speed	EN-RO	RO-EN	EN-RO	RO-EN	EN-RO	RO-EN	
Transformer (Vaswani et al., 2017)	$1.0 \times$	32.88	33.94	-	-	-	-	
					29.68 +0.71			
BoN- L_1 (N=2)* (Shao et al., 2021)	$15.6 \times$	30.76	30.46	30.96 +0.20	30.74 +0.28	30.88 +0.12	30.78 +0.32	

Machine Reading Comprehension (outperforms SOTA)

Method	ROUGE-L	BLEU-4	F1				
dev set							
MacBERT-base (Cui et al., 2020)	51.4	50.3	53.9				
MacBERT-base + ReLoss	51.8	50.6	54.2				
MacBERT-large (Cui et al., 2020)	53.2	51.2	55.5				
MacBERT-large + ReLoss	53.6	51.4	55.9				
test set							
BiDAF [†] (Seo et al., 2016)	39.2	31.9	-				
Wang et al. (2018)	44.2	41.0	-				
MCR-Net-large (Peng et al., 2021)	50.8	49.2	-				
Human Performance [†]	57.4	56.1	-				
MacBERT-large + ReLoss	64.9	61.8	-				

Relational Surrogate Loss Learning Conclusion

► We study an interesting problem:

Learning losses for non-differentiable evaluation metrics

▶ We use a simple method:

Differentiable rank correlation to train better surrogate losses

- ► Potential applications:
 - New tasks with losses difficult to design
 - Existing tasks with losses align weak to evaluation metrics

Thank you!

The code is available at: <u>https://github.com/hunto/ReLoss</u>