

Prioritized Architecture Sampling with Monto-Carlo Tree Search

Xiu Su¹*, Tao Huang²*, Yanxi Li¹, Shan You^{2,3†}, Fei Wang², Chen Qian², Changshui Zhang³, Chang Xu^{1†} ¹School of Computer Science, Faculty of Engineering, The University of Sydney, Australia ²SenseTime Research ³Department of Automation, Tsinghua University *Equal contributions [†]Corresponding authors {xisu5992,yali0722}@uni.sydney.edu.au {huangtao,youshan,wangfei,qianchen}@sensetime.com

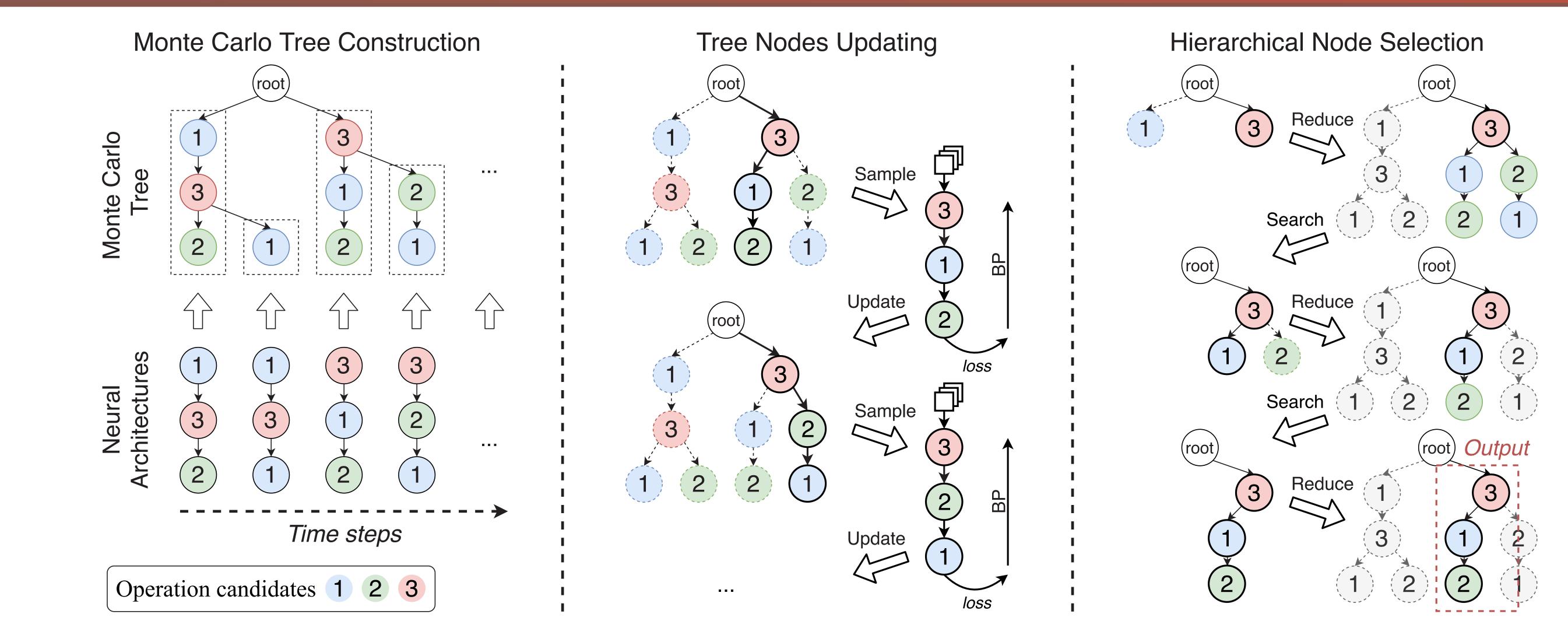
zcs@mail.tsinghua.edu.cn c.xu@sydney.edu.au

Motivation

One-shot NAS: Based on the weight-sharing paradigm, One-shot NAS methods model NAS as a one-shot training process of an over-parameterized supernet, where various architectures can be directly derived. **Single Path Methods:**

- 1. Iteratively train the paths (architectures) in the supernet.
- 2. Search architectures then return the one with the best performance.

Framework of MCT-NAS



Issues:

- Current methods select each operation independently without considering previous layers.
- The historical information obtained with huge computation cost is usually used only once and then discarded.
- The search cost is high since it usually searches a large number (e.g., 1000) of architectures for a good result.

Intuition

Modeling the search space as a Monte-Carlo tree (MCT), which can naturally

- capture the dependency among layers with a tree structure;
- store intermediate results for future decision and a better exploration-exploitation balance; • bridge the training and search by searching on the MCT constructed in training.

MCT-NAS models the search space into a MCT (left), then updates the tree with a prioritized sampling strategy during training (middle), finally searches the optimal architecture using hierarchical node selection (right).

Training with Prioritized Sampling

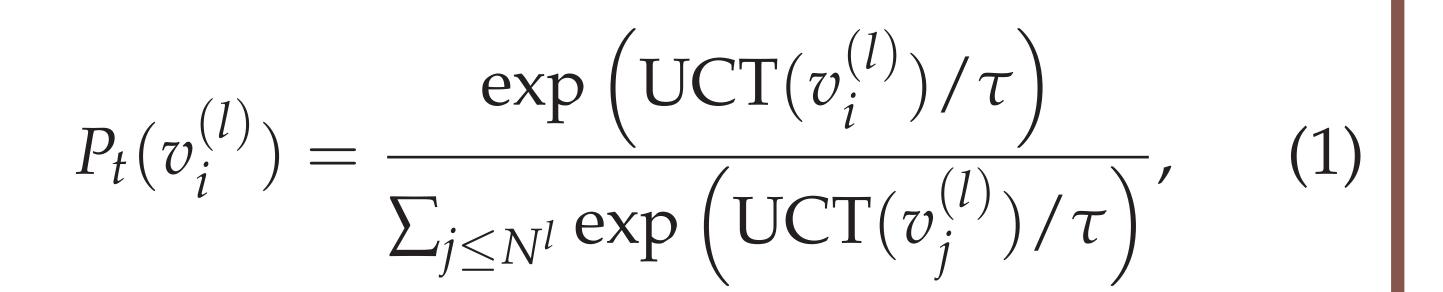
We use the training loss as the Q-value in UCT function, calculated as

$$Q(v_i^{(l)}) = \frac{\widetilde{\mathcal{L}}_t}{\mathcal{L}_{tr}(\boldsymbol{\alpha}_t)},$$

where \mathcal{L}_t denotes the training loss of the current architecture, α_t is the moving average of training loss in previous *t* iterations.

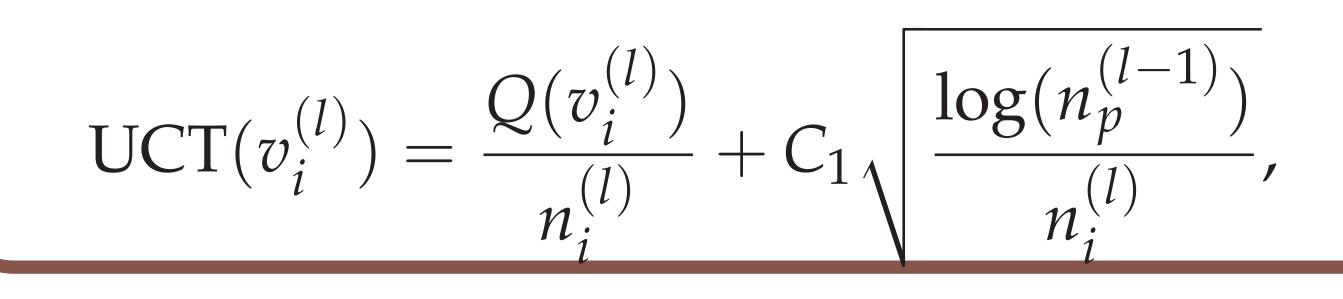
The UCT function for the node $v_i^{(l)}$ in layer lwith choice *i* is calculated by

where $n_p^{(l-1)}$ and $n_i^{(l)}$ denotes the visit times of parent node and this node, respectively. To make more nodes evaluated, we relax the operation selection in MCTS into a probabilistic distribution, formulated as



Problems:

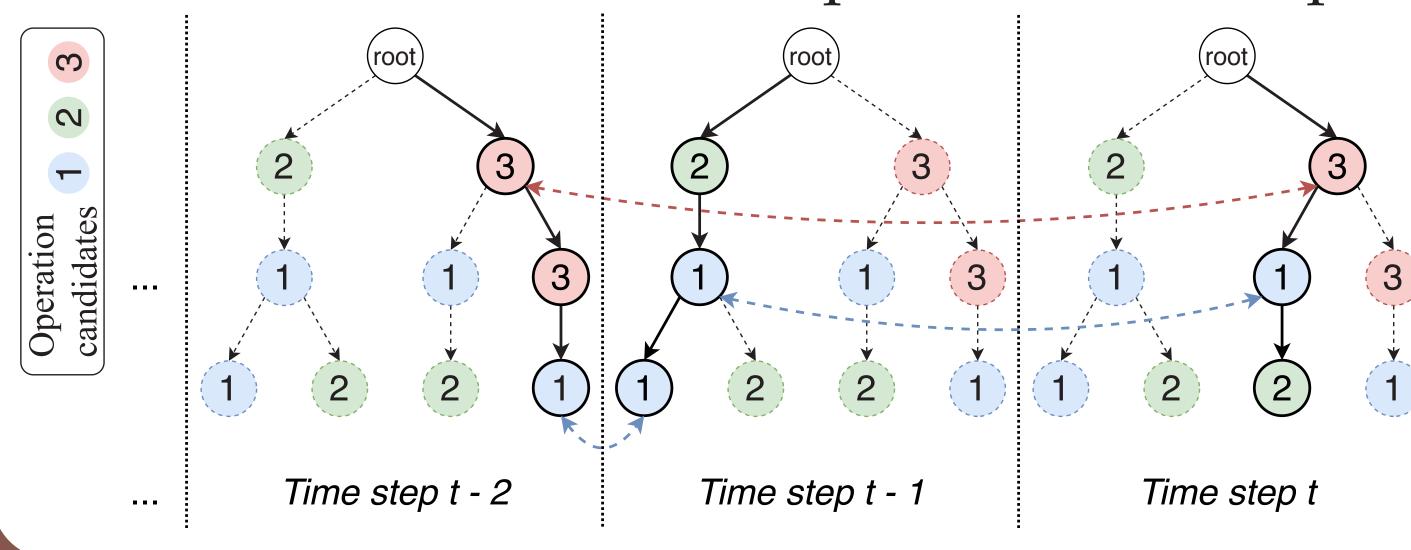
- 1. Q: How to reward the operations in MCT? A: Use the training loss \mathcal{L}_{tr} as the Q-value in UCT function.
- 2. Q: It's impossible to explore all the nodes since the number of nodes grows exponentially with the increment of depth. A: 1. We propose a node communication technique to share the rewards for nodes with the same operation and depth. 2. We propose a hierarchical node selection method to select the node hierarchically and re-evaluate those less-visited nodes.



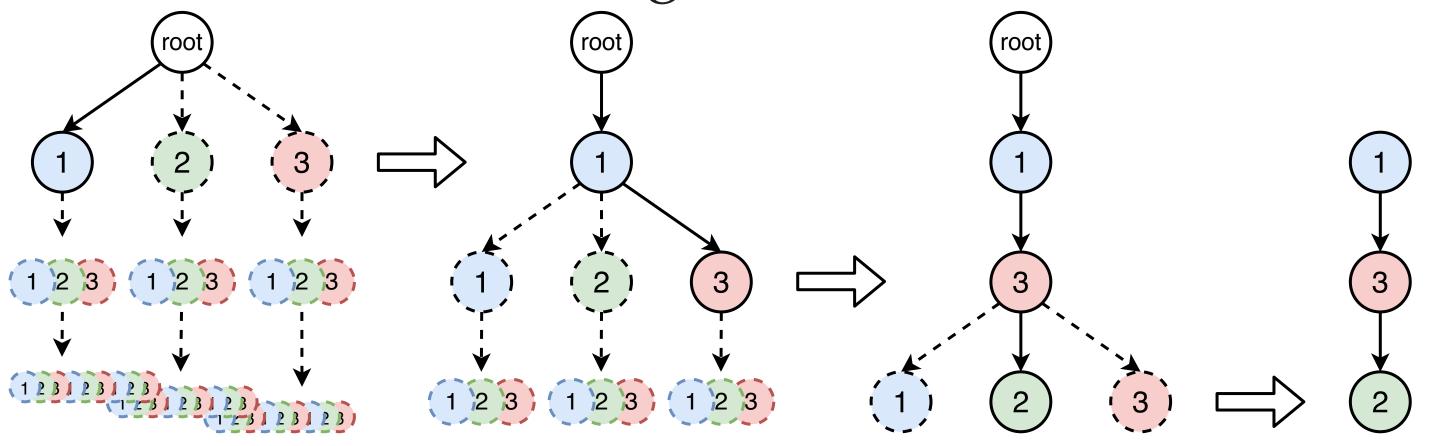
where τ is a temperature term. We set τ to 0.0025 in all of our experiments.

Node Communication and Hierarchical Node Selection

In supernet training: We propose a node communication technique to share the rewards for nodes with the same operation and depth.



In search: We propose a hierarchical node selection method to select the node hierarchically; for those less-visited nodes, we reevaluated them using a small validation set.



Experimental Settings

ImageNet:

• Search space: MobileNetV2 inverted bottleneck with CNN kernel $\{3, 5, 7\}$, expansion ratio $\{3, 6\}$ and optional SE module. Size 13²¹ with identity. • Supernet: train 60 epochs using uniform sampling for warm-up, 60 epochs with MCTS ____ • Search: 20 architectures in MCT • Retraining: following Mnasnet.

NAS-Bench-Macro

We propose a NAS benchmark on macro structures with CIFAR-10 dataset. The benchmark is avaliable at https://github.com/ xiusu/NAS-Bench-Macro.

Our MCT-NAS can search better architectures with **fewer** search number:

CIFAR-10:

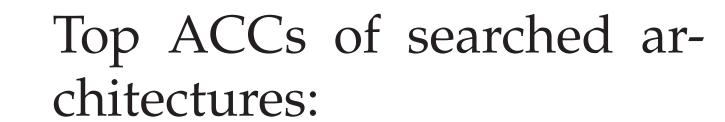
Search space: MobileNetV2 in-• Search space: MobileNetV2 insize $\{3, 5\}$ and expansion ratio $\{3, MB6_K7_SE\}$ 6} Size 3⁸ with identity.

MB6_K3_SE

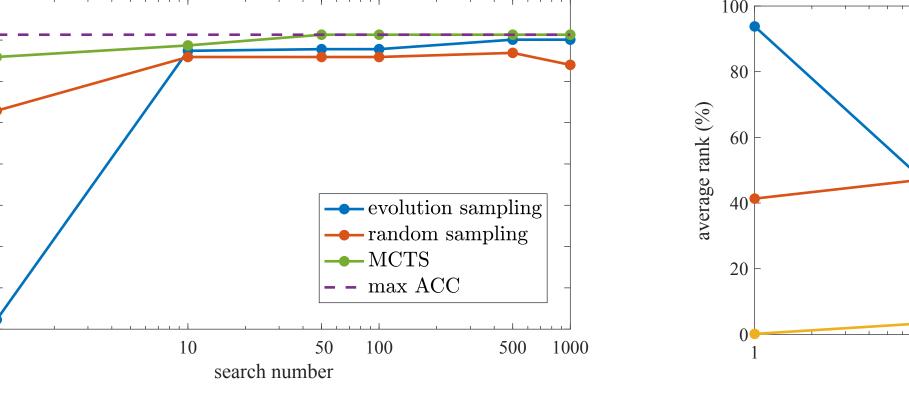
- Supernet: train 100 epochs using uniform sampling for warmup, 100 epochs with MCTS
- Search: 20 architectures in MCT

Our MCT-NAS can obtain better supernet with higher ranking correlation:

Methods	Spearman rho	Kendall tau
uniform	88.96%	72.41%
MCTS	90.63%	74.66%
uniform + MCTS	91.87%	76.22%



Average percentile rank of searched architectures:



-- random sampling --- MCTS 500 search number

Comparison with State-of-the-art NAS Methods on ImageNet

Methods	Top-1	FLOPs	Params	training	search
		(M)	(M)	(Gdays)	number
SCARLET-C	75.6	280	6.0	10	8400
GreedyNAS-C	76.2	284	4.7	7	1000
MCT-NAS-C	76.3	280	4.9	12	20×5
Single-path	76.2	328	_	12	1000
ST-NAS-A	76.4	326	5.2	_	990
GreedyNAS-B	76.8	324	5.2	7	1000
MCT-NAS-B	76.9	327	6.3	12	20×5
EfficientNet-B0	76.3	390	5.3	-	_
ST-NAS-B	77.9	503	7.8	_	990
MCT-NAS-A	78.0	442	8.4	12	20×5

